笔者根据在互联网和数据领域的实际从业经验,总结出数据价值金字塔在企业运营中的应用模型。该模型对应的是企业运营中的不同层面的数据需求。
数据基础平台层。金字塔的最底层也是整个金字塔的基础层,如果基础层搭建不好,上面的应用层也很难在企业运营中发挥效果。没有数据或者没有高质量的数据,所有的分析都是误导,所有的数据挖掘都很可能是错误的引导。
这一层的目标是把企业的所有用户(客户)数据用唯一的ID串起来,包括用户(客户)的画像(如性别、年龄等)、行为以及兴趣爱好等,以达到全面的了解用户(客户)的目的。要做好有三个关键:1.企业需要确定打通数据的唯一ID,有的企业是用会员注册号,有的是手机号或者身份证号等等。2.跨部门整合数据的问题。有大数据的企业通常部门都比较多,用户(客户)的各种行为和兴趣爱好数据散落在不同部门,需要企业有意识强有力的去整合;3.通过技术手段和规范手段把数据管理起来,这里解决的问题是存在数据库里面的数据具体的含义是什么,以及如何高效的存储和计算,涉及到数据接入系统、元数据管理系统和计算任务调度等系统。
业务运营监控层。这一层首要的是搭建业务运营的关键指标体系,在此基础上通过智能化模型开发出来的数据产品,监控关键数据的异动,并可以快速定位数据异动的原因,辅助运营决策,如果企业构建了实时计算的能力,那么很多业务运营中问题就能及时的发现。
用户/客户体验优化层。这一层面主要是通过数据来监控和优化用户/客户的体验问题。这里面既运用了结构化的数据来监控,也运用非结构化的数据(如文本)来监控体验的问题。前者更多的是应用各种用户(客户)体验监测的模型或者工具来实现,后者更多的是通过监测微博、论坛和企业内部的客户反馈系统的文本来发现负面的口碑,以及时的优化产品或服务。
业务运营监控层和用户/客户体验优化层最终希望成为企业运营的智能化医生。这两层面做出的工具好比是体温计、血压计、B超、CT等工具,我们用这些工具就能快速透视企业运营中那一模块产生问题。
精细化运营和精细化营销层。这个层面有四个方面的事情:1.构建基于用户的数据提取和运营工具。运营和营销人员通过简单的条件配置(如选择男性、18-24岁以及特定兴趣爱好),便可把数据(用户/客户)提取出来,对数据背后的用户/客户进行营销或运营活动;2.通过数据挖掘的手段提升客户对活动的响应(如点击率),常见的算法有决策树、逻辑回归等等;3.通过数据挖掘的手段进行客户生命周期管理。区别于传统的客户生命周期管理,大数据可以做到实时地对不同生命周期的客户进行标记和预警, 并把有效的活动当成商品一样及时地推送给处于生命周期不同阶段的客户;4.客户个性化推荐。主要是用个性化推荐算法实现根据用户不同的兴趣和需求推荐不同的产品,以实现推广资源效率和效果最大化。
数据辅助市场传播。这一层面要做到通过数据分析和挖掘来辅助产品进行传播,主要有两种实现方式:一种是数据信息图谱,将信息以一种“有趣”的方式进行传播和呈现。另外一种方式是直接做成数据产品对外使用。比如,百度指数或百度过年期间做的迁徙地图。
业务经营分析和战略分析层。这两个层面跟很多传统的战略分析、经营分析层面的方法论相似,最大的差异是数据来自于大数据。但这里面有两方面需要注意:1.有很多企业错误地把“业务运营监控层”和“用户/客户体验优化层”做的事情放在经营分析或者战略分析层来做。我认为“业务运营监控层”和“用户/客户体验优化层”更多的是通过机器、算法和数据产品来实现的;而“战略分析”、“经营分析”更多的是人来实现。很多企业把机器能做的事情交给了人来做,这样导致发现问题的效率较低。我的建议是,能用机器做的事情尽量用机器来做好,在此基础上让人来做人类更擅长的:经验分析和战略判断;2. 在变化极快的互联网领域,在业务的战略方向选择上,数据很难预测业务的大发展方向,如果有人说微信这个大方向是通过数据挖掘和分析研究出来,估计产品经理们会笑了。从本质上来说,数据在精细化营销和运营中能起到比较好的作用,但在产品策划、广告创意等创意性的事情上,起到的作用较小。但一旦产品创意出来,就可以通过灰度测试,数据效果验证了。
我认为,如果能利用数据通过机器、算法、或者人工的手段,把现状和问题及其原因洞悉的特别清楚已经很不错了,这样决策层就可以基于这些情况进行更好的“拍脑袋”决策。
注:本文中的部分信息为根据公开资料整理,其中的原创信息版权归其相应作者